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Controlling nanowire growth through electric
field-induced deformation of the catalyst droplet
Federico Panciera1,2, Michael M. Norton3, Sardar B. Alam4, Stephan Hofmann1, Kristian Mølhave4

& Frances M. Ross2

Semiconductor nanowires with precisely controlled structure, and hence well-defined

electronic and optical properties, can be grown by self-assembly using the vapour–liquid–solid

process. The structure and chemical composition of the growing nanowire is typically

determined by global parameters such as source gas pressure, gas composition and growth

temperature. Here we describe a more local approach to the control of nanowire structure.

We apply an electric field during growth to control nanowire diameter and growth direction.

Growth experiments carried out while imaging within an in situ transmission electron

microscope show that the electric field modifies growth by changing the shape, position and

contact angle of the catalytic droplet. This droplet engineering can be used to modify

nanowires into three dimensional structures, relevant to a range of applications, and also to

measure the droplet surface tension, important for quantitative development of strategies to

control nanowire growth.
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A
versatile approach to the formation of nanostructures is

growth by the vapour–liquid–solid (VLS) mechanism1–4.
Unlike conventional thin film or bulk crystal growth, VLS

nanowire growth relies on the presence of a liquid droplet to
catalyse incorporation of the growth material, which is supplied
from the gas phase. Growth takes place only at the catalyst/
nanowire interface to form an elongated crystal structure or
nanowire. The chemical composition, diameter, growth direction
and even crystal structure of the growing nanowire are modulated
by changes in the basic growth parameters of temperature, and
source gas pressure and composition5–11. In situ experiments
have shown that these parameters control the droplet geometry
and composition6,12,13. Thus, the droplet has a fundamental role
in determining the structure of the nanowire. The remarkable
range of structures enabled by VLS can be thought of as the
result of engineered changes to the droplet. For example, varying
the droplet composition controls the composition of the
deposited material, forming heterostructures9 and embedded
nanocrystals14. Changing the droplet contact angle by varying its
volume can alter the nanowire diameter5,15 and sidewall
structure12, and even, in some materials, switch between growth
of one crystal structure and another6. Finally, changes in droplet
position at the nanowire tip are connected to phenomena of
nanowire kinking16–18.

Droplet engineering has conventionally involved changing the
growth temperature or the pressure(s) of the precursor gas(es).
Here we describe a different approach to droplet engineering,
application of an external electric field during growth. Applying
an electric field deforms the droplet, directly altering its shape,
contact angle and position, without affecting other aspects of
growth. In contrast, pressure and temperature have multiple
effects and nanowire growth often has a complex dependence on
these parameters. We explore electric field effects by growing Si
nanowires inside a microfabricated growth system that can be
operated in an in situ TEM (transmission electron microscope).
Two separate substrates form a capacitor in which nanowires
grow while under observation in the TEM. We image the changes
in droplet geometry and nanowire growth as voltage is applied.
We show that response to the electric field is rapid, compared
with the response to pressure or temperature changes. The field
breaks the symmetry of nanowire growth, suggesting opportu-
nities to create new types of complex, three dimensional
structures. Furthermore, diameter modulation is possible and
growth can be stabilized when nanowire kinking is not desired.
Such experiments also probe the surface tension of the droplet.
This parameter enters in all models describing VLS growth15,19,
but has only been measured on a macroscopic scale and in
environments far from growth conditions20,21. We discuss how
the results can be adapted for conventional reactors. VLS growth
in an electric field in principle allows new opportunities for
modulating growth and access to part of the parameter space that
is otherwise unavailable, and can thus be a powerful tool for
nanostructure control.

Results
Nanowire growth in an electric field. In order to apply an
electric field during VLS Si nanowire growth, we use the
experimental design shown in Fig. 1a. A capacitor is formed by
two loop shaped monocrystalline silicon cantilevers, each of
which can be Joule heated separately by direct current22. The
cantilevers are spaced a few micrometers apart and insulated
from each other to allow up to ±200 V to be applied between
them. Note that the highest voltage possible in these experiments
is still well below the threshold for the breakdown of typical VLS
Si precursor gases such as silane23. The sidewalls are {111} so that

nanowires that nucleate epitaxially can grow perpendicular to the
electrodes. Nanowires are grown only on one loop and growth is
stopped when one nanowire tip approaches within a few hundred
nanometers of the opposite cantilever, referred to as the counter
electrode (CE) (Fig. 1b). At this distance, applying 100 V between
nanowire and CE (an electric field of B1 V nm� 1) is sufficient to
deform the catalyst droplet (Fig. 1c). Real-time imaging shows a
rapid response of the droplet to the field (Supplementary
Movie 1). To analyse the droplet deformation, we parametrize
it by measuring the droplet aspect ratio, that is, the ratio between
the semi-axes of the ellipse that best fits the droplet shape
(Fig. 1b). Data collected over several voltage cycles show that the
droplet deforms reproducibly (Fig. 1d) with an aspect ratio that
depends on the magnitude but not the sign of the voltage (Fig. 1d
inset). Note that at zero field the aspect ratio is 41, indicating
that the droplet is a few per cent elongated compared with the
expected spherical cap shape. We suggest that this deviation from
spherical geometry is generated by the faceted nature of the
nanowire on which the droplet sits. Si nanowires typically have a
trigonal hexagonal cross-section, that is, alternating longer and
shorter edges. A droplet pinned on such a base is expected to be
non-spherical with different contact angles on opposite sides24.
Although we cannot measure our nanowire cross sections
directly, asymmetrical contact angles are evident in images,
supporting this interpretation.

We find that field-induced deformation can affect nanowire
growth in different ways. A field along the nanowire axis can
modulate the diameter or stabilize growth, while a field at an
angle can kink the nanowire. Figure 2a and Supplementary Fig. 1
show how a nanowire’s diameter is changed, here by a factor of
almost 2, by a strong axial field during growth that changes the
droplet-nanowire contact angle. Since deformation is reversible, it
is possible to modulate the diameter (See Supplementary Fig. 2).
Figure 2b illustrates how an axial field stabilizes the growth
direction during drastic changes of temperature and pressure. It is
well known7,16,25 that reducing temperature and pressure tend to
destabilize growth because the droplet depins from the nanowire
tip and wets the sidewall (Fig. 2b, second image), so that, as
growth restarts, the nanowire kinks to one of the three equivalent
h111i directions. However, a field applied before restarting
growth repositions the droplet to its original position and
prevents kinking. This mechanism may explain the improvement
in alignment of nanowire forests grown under an electric field26.

Figure 2c and Supplementary Movie 2 demonstrate the use of
an off-axis electric field to induce kinking controllably. The
nanowire shown grew initially in a h111i direction at an angle of
B70o to the field direction (defined by the sides of the capacitor).
The off-axis field breaks the symmetry between contact angles on
each sidewall. The contact angle opposite the CE is reduced and
as a result the nanowire tapers and the droplet is squeezed onto
an increasingly narrow pedestal. Eventually the droplet depins
and wets the sidewall to relieve the force on both trijunctions17.
The nanowire/droplet interface is now composed of two {111}
facets (arrowed in the third image). Further growth shrinks the
original facet and increases the new one until the growth
direction changes completely (fourth image). Additional images
and the final geometry of the nanowire and CE are shown in
Supplementary Fig. 3. Several methods have already been
proposed to induce nanowire kinking, such as temperature or
pressure changes (including growth interrupts)7,25 or changes in
the gas environment27. However, these methods cannot select
which of the symmetry-equivalent directions the nanowire will
kink towards. Electric field-induced kinking appears to force the
nanowire into whichever crystallographically preferred direction
(h111i for Si nanowires) is closest to the field direction. Figure 2d
shows a variant of this concept. Instead of using a large, flat CE to
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set the field direction, one can use a nanostructure. A potential
applied between this nanostructure and the growing nanowire
can distort the droplet towards the nanostructure (third image),
biasing nanowire growth towards the nanostructure. The ability
to apply fields in different directions could potentially produce
nanowires with specified three-dimensional structures.

Measurement of surface tension. The in situ experiments in
Figs 1 and 2 have shown that nanowire growth is highly sensitive
to distortions in the droplet shape. In order to use this droplet
engineering to control nanowire morphologies in conventional
growth reactors, it is important to be able to calculate the droplet
geometry in different externally imposed field conditions. This
requires knowledge of the balance between surface tension and
local field, since surface tension tends to make the droplet
spherical and the field typically elongates it. However, the surface
tension of AuSi is not well known for the conditions (tempera-
ture, pressure and droplet dimensions) relevant to nanowire
growth. We therefore analyse deformation as a function of field to
obtain a measurement of droplet surface tension during growth.

In order to obtain a large data set and increase the
measurement accuracy, we interrupted the growth of a nanowire
at three different distances from the CE by decreasing the Si2H6

pressure (Fig. 3a). We then obtained deformation versus voltage
(Fig. 3b,c). This involved parameterizing the droplet–vacuum
interface as an ellipse (Fig. 4a). An ellipse appears to give a
reasonable representation of the interface for points that do not
lie near the droplet/nanowire interface, where the droplet is
asymmetrically deformed. We use the ellipse parameters
to construct an axisymmetric domain (Fig. 4b) on which
the electric potential is calculated by solving the Laplace
equation (see Methods). The droplet and the nanowire are
considered to be perfectly conductive. After determining the
electric field distribution along the droplet surface, we use it to

find the Maxwell stress distribution, which modifies the Young-
Laplace equation:

g
1

R1
þ 1

R2

� �
¼ DP0 þ

1
2
e0E2

n; ð1Þ

where g is the droplet surface tension, R1 and R2 the two position-
dependent curvature radii, DP0 the internal pressure of the
droplet, e0 the vacuum permittivity and En the position
dependent component of the electric field normal to the droplet
surface. This equation is solved numerically by representing the
axisymmetric surface as a curve parameterized by arc length, as
described in Methods and in Bateni et al.28 and Harris et al.29.
Finally, comparing the calculated droplet shape with the TEM
images yields the best fitting surface tension for each frame
(Fig. 4c).

Figure 4d shows the aspect ratio versus E curves from the three
data sets in Fig. 3. The data fall on the same curve, implying
that the three distances Dx were accurately measured (see Supple-
mentary Note 1). Figure 4e shows the surface tension values
g extracted from these and another data set. Our solutions to the
modified Young–Laplace equations assume axial symmetry of the
base and droplet, hence predict that the droplet approaches a
spherical cap geometry at zero field. Since, as discussed above, the
droplet shape is not a spherical cap at zero field, our fits,
therefore, yield values of g that tend to zero in weak fields to
compensate (a weak field can only distort a droplet if it has low g,
see Methods).

The resulting surface tension value, 0.55±0.1 J m� 2, is
estimated by using the error weighted average of the data in
Fig. 4e. This is significantly lower than literature values
(0.98 J m� 2 (ref. 20) and 0.780 J m� 2 (ref. 21)), perhaps due to
the conditions (different temperature, lower pressure, nanometer
scale droplets) and measurement method used here. It is also
worth noting that g does not appear to depend on field, at least
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Figure 1 | Experimental setup. (a) Image recorded in a light microscope showing a microfabricated device composed of two Si loops that can be heated

and biased independently. After depositing Au on the loops, a current of 1 mA passing through loop 2 heated the tip to 500 �C, allowing nanowire growth

when disilane was flowed. The gap between loops is 2.5mm. (b) Schematic showing a nanowire growing in the [111] direction across the gap, and

parameters measured on each video image. Loop 2 is grounded and voltage is arbitrarily set at V¼0. (c) Sequence of video images showing a droplet (W1,

see Fig. 4 below) deforming at B500 �C and the voltages shown. Scale bar, 100 nm. (d) Droplet aspect ratio (b/a) versus voltage V. Inset is b/a versus the

absolute value of |V|. Note the aspect ratio of 1.05 at zero field, discussed in the text.
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for the range accessible here (in Fig. 4e, g remains essentially
constant for E in the range 1.25–2.8 V nm� 1). This method
allows us to measure g under growth conditions, and does not
require any knowledge of the surface energy of the substrate on
which the droplet is sitting. Knowledge of g is useful in improving
growth models15,19 and allowing more accurate simulation of
growth under external stimuli.

Discussion
To develop applications of electric field-directed nanowire
growth, it is important to apply the technique within conven-
tional growth reactors. The main differences between our
experimental conditions and conventional reactor conditions
are the gas pressure and the presence of a CE close to the growth
substrate. Nanowire growth at standard reactor pressures in the
mTorr to Torr range has been carried out under fields of similar
strength without causing an electric breakdown26, as expected by
the Paschen law for silane23. Since pressure mainly changes
the rate rather than the mechanism of nanowire growth, we,
therefore, expect that at reactor pressures and in the applied field,
phenomena such as diameter modulation and kinking will still
take place as described above but over shorter time scales.
However, the presence of an external CE in the immediate

proximity of the sample is not easily scalable to standard reactors.
We, therefore, propose two modifications that can allow a field to
be applied during growth. The first consists in growing nanowires
on a patterned and polarizable substrate or on a nano-
electromechanical structure30–32 so that either the nanowires
themselves, or nearby previously fabricated nanostructures, will
act as the CE. This can in principle direct nanowire growth into
complex networks, as shown in Supplementary Fig. 4a,b. A
second approach is to exploit the strong electric field generated in
the Debye sheath during conventional plasma enhanced chemical
vapour deposition, Supplementary Fig. 4c. This has been
successfully used for the alignment of carbon nanotubes33–36.
With these approaches we believe that the use of electric fields to
control nanowire growth could become feasible in conventional
reactors (see also Supplementary Note 1).

The ability to control nanowire growth by an electric field
suggests some intriguing possible applications. Diameter
modulation can increase surface scattering of phonons, important
for thermoelectric applications37. Controlled kinking could lead
to the fabrication of three-dimensional structures with
applications in electronics7 and sensing38. Field-controlled
kinking could perhaps even force nanowires growing laterally
(‘crawling’) along the substrate39 into vertical growth. Directing
wires to kink towards each other, as in Supplementary Fig. 4a,b,
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Figure 2 | Nanowire growth controlled by electric field. (a) Image sequence showing a nanowire growing at 480 �C and 1.2� 10� 5 Torr Si2H6 in the [111]

direction towards the CE, 800 nm distant, under an applied voltage of �90 V (E-field is B100 Vmm� 1). The progressively decreasing nanowire diameter

is reported in each image. (b) Sequence in which a nanowire growing stably in the [111] direction at B1.6� 10� 5 Torr and 500 �C is cooled to 370 �C (first

image). Heating back to 500 �C destabilizes the droplet (second image). A field is applied and ‘repositions’ the droplet back to the original growth plane

(third image) so growth continues without a kink. (c) Sequence showing a nanowire growing in a o1114 direction at 510 �C and B1.6� 10� 5 Torr of Si2H6.

When � 52 V is applied on the CE generating a field in the [111] direction (at B70o to the growth direction), the nanowire gradually kinks to this direction.

(d) Sequence showing a droplet deformed towards an asperity on the CE (in this case, a previously grown nanowire that has lost its droplet). Scale bars, 50

nm; arrows represent the direction of the E-field inside the capacitor.
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may help in creating complex structures with electronic
applications. An example is the X-junction geometries sought
for devices that involve Majorana fermions40,41. Finally, in
materials such as GaAs, it is known that the nanowire can
grow with either a hexagonal or a cubic structure, with the choice
determined by the contact angle6. This implies that it should be
possible to form crystal phase heterostructures in III–V
nanowires by controlling contact angle with field, as shown in
Supplementary Fig. 5.

We have shown that an externally applied electric field
can strongly affect the growth of nanowires via the VLS process.
Real-time imaging provides a direct demonstration that the
field controls growth by inducing changes in the droplet
geometry, in particular the droplet position and the droplet–
nanowire contact angle. An axial electric field can stabilize growth
and change nanowire diameter reversibly. Breaking the symmetry
by applying the field at an angle to the nanowire axis allows
kinking in a desired direction. We have also shown that nanoscale
electrodes, such as a previously grown nanostructure, can be used
for local control of nanowire growth directions. Finally, the ability
to apply an electric field allows measurement of the surface
tension of the AuSi droplet under growth conditions, which, as
well as being useful for modelling growth, allows prediction of the
droplet shape in more general fields and geometries. We believe
that the use of externally applied fields provide new opportunities
for nanowire growth, with the ability to create structures that
cannot be obtained through the global control of parameters such
as temperature, gas composition and gas pressure. If it can be
adapted to conventional growth reactors, electric field-enabled
droplet engineering can provide exciting opportunities for
enhancing the VLS technique to create a variety of complex,
three dimensional nanowire-based structures.

Methods
Sample fabrication. The cantilever loops were fabricated in a process similar to
that described in Kallesøe et al.22 and Alam et al.42. Silicon cantilever heaters were
fabricated by etching the device layer of a silicon-on-insulator wafer using reactive
ion etching42. The device layer was 4±0.5 mm in thickness, had a resistivity of
0.085Ocm (Boron, 3� 1017cm� 3), and o1104 orientation with the cantilever
sidewalls being the desired {111} planes. After fabrication, the cantilevers were
etched in 28% KOH for 20 s at room temperature to planarize the {111} sidewalls.
For growth, the cantilevers were Joule heated to 470–550 �C by applying typically
28–35 mW (0.65–1 mA and 25–35 V) to each cantilever loop. This was supplied by
two Keithley 2400 SourceMeters set up as constant current sources. The
temperature was calibrated from nanowire growth rate using the method described
in Alam et al.42. A third power supply controlled the voltage between the two loops.
The maximum voltage applied, 200 V, resulted in a leakage current below 1mA.

Nanowire growth was performed in a Hitachi H-9000 ultrahigh vacuum TEM
having a base pressure of 2� 10� 10 Torr and a maximum pressure during imaging
of 2� 10� 5 Torr. This microscope is connected to a cluster of ultrahigh vacuum
tools where metal deposition was carried out. The native oxide was removed from
the cantilever surface by 10% hydrofluoric acid (HF) etchant solution for 2 min.
The chip was then immediately transferred (within 2 min) to the TEM loadlock,
where it was baked at 100–150 �C under a tungsten lamp for 8 h to degas and
remove moisture. It was then transferred under vacuum to a Knudsen cell Au
evaporation system, thus maintaining an oxide-free surface. Less than 5 nm Au was
deposited at a grazing angle (10–15o) to the cantilever sidewalls to act as the VLS
catalyst. The sample was then transferred under vacuum to the TEM where
precursor gas (Si2H6) was introduced through a capillary tube. The temperature
was then raised to 500 �C in order to agglomerate Au into droplets and initiate VLS
growth. Typical growth rates are in the range 5–15 nm min� 1 at temperatures of
470–520 �C.

When a voltage is applied we measure a small change, DD, in the distance
between nanowire and cantilever. We suggest that this is due to electrostatic
attraction between the two sides of the capacitor (rather than say an elongation of
the nanowire pulled by its droplet) since DD is larger when the applied voltage is
greater (Fig. 3b), that is, the electric field between the loops is greater, and not when
the droplet deformation is larger (Fig. 3c), that is, when the local electric field
between droplet and CE is greater. This accounts for the few per cent distance
variation at each fixed Dx in Fig. 3c.

We have evaluated the possibility of electron beam effects in these experiments.
Changing the beam intensity does not result in a detectable change in the
deformation or position of the droplet, or in the nanowire growth kinetics.
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Furthermore, we do not observe measurable charging effects from the field: the
droplet shape responds rapidly to changes in E-field direction (Supplementary
Movie 1). Although the nanowires are not deliberately doped, we measured a
resistivity of the order of 1Ocm42, 3–4 orders of magnitude lower than intrinsic
bulk Si and more than 12 orders of magnitude lower than SiO2. This low resistivity
can be explained by surface conduction or unintentional doping of Si due to
experiments in the microscope involving other materials. For this reason our
nanowires can be considered conductive and we can exclude the presence of charge
accumulation due to the electron beam.

Simulations. The first step of the process of calculating the surface tension from
the droplet deformation is to identify, using edge detection algorithms on
thresholded images, the points in each image corresponding to the electrode and
the droplet/nanowire and droplet/vacuum interfaces. These points were used to
obtain the nanowire radius R, distance between nanowire and CE, and droplet
geometry. From this, an idealized axisymmetric representation of the experimental
geometry was created. The electric potential was calculated on this domain using
the finite element method in Mathematica. The nanowire and droplet surface were
arbitrarily set to j¼ 0 and the CE to j¼V; the natural boundary condition
n̂ � rj¼ 0 is applied everywhere else. We solve the system in dimensionless form
using the measured R and known V to scale the system: �r ¼ r=R, �z ¼ z=R and
�j ¼ j=V .

�r2 �j ¼ @2 �j
@�z2

þ 1
�r
@

@�r
�r
@�j
@�r
¼ 0 ð2Þ

Once the electric field distribution along the droplet has been found, it can be used
to obtain the Maxwell stress distribution, which, for a conducting droplet, modifies

the Young–Laplace equation as follows:

g
1

R1
þ 1

R2

� �
¼ DP0 þ

1
2
e0E2

n ð3Þ

We can take advantage of the additional symmetry at the apex to define the
unknown constant DP0 in terms of the mean curvature 1=R1ð Þjs¼0¼ 1=R2ð Þjs¼0¼
b=a2 and apex electric field E2

n

��
s¼0

such that

DP0 ¼ 2g
b
a2
� 1

2
e0 E2

n

��
s¼0

ð4Þ

Here s is the distance along the interface, starting at the apex of the droplet and
following the droplet curvature. The principal curvatures can be recast in differ-
ential form as 1=R1 ¼ df=ds and 1=R2 ¼ sinf=r following Rı́o et al.43. Equation 4,
along with two geometric relationships, becomes the system:
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þ sinf
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n z sð Þð Þ� 1
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¼ cosf
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¼ sinf

ð5Þ

with initial conditions

f 0ð Þ ¼ r 0ð Þ ¼ z 0ð Þ ¼ 0 ð6Þ

Non-dimensionalizing the system and boundary conditions according to the scales
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surface used to evaluate the best fit, far enough from the nanowire interface to be relatively unaffected by the cross sectional shape. (d) Droplet aspect

ratio versus calculated electric field at the apex of the droplet. The three data sets in Fig. 3 (W2: D1, D2, D3) are superimposed. (e) Best fitting surface

tension g versus square of electric field at the droplet apex. The three data sets in Fig. 3 and data from Fig. 1 (W1) are superimposed. The error bars account

for the calculation artifact described in Methods. We choose error in g that scales as 1/(a/b� a0/b0), where a0/b0 is the measured aspect ratio of the

droplet at zero-field. This captures the fact that deviations from the unperturbed geometry need to be large before their measurement becomes significant.

The horizontal dashed line shows the value of surface tension obtained as error weight average of all data, g¼0.55 J m� 2.
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used in Equation 2 gives

df
d�s
þ sinf

�r
¼ 2

�b
�a2
þO

1
2

�E2
n �

1
2
e0�E2

n

��
s¼0

� �

d�r
d�s
¼ cosf

d�z
d�s
¼ sinf

ð7Þ

with dimensionless Electric Bond Number O ¼ V2e0=gR arising naturally. We find
the best fit between the theoretical predictions (subscript t) and N points from the
best-fit ellipse (subscript e) by minimizing the penalty function with respect to O

F Oð Þ ¼
XN

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�rt;i Oð Þ��re;i
� �2 þ �zt;i Oð Þ��ze;i

� �2
q

ð8Þ

A more general penalty function is discussed in Rı́o et al.43, which accounts for
rotation of the acquired profile; however, the orientation of our profiles have
already been determined using the best-fit ellipse from the image processing step.
Once O has been determined, the surface tension can be found directly from
g ¼ V2e0=OR.

Errors in the measurement of surface tension. We find that the main source of
error in the measurement of surface tension is the systematic error in determining
the distance D between the droplet tip and the CE. The CE is a microfabricated
surface, viewed in projection and not perfectly flat. Since it is not always obvious in
projection which part of the surface is nearest the droplet, we estimate that error in
D could be of the order of several tens of nm in a single data set, corresponding to a
B20% error in g. Note that the true value of D is always greater than or equal to
the apparent value in the images. This error can be eliminated with the method
shown in Fig. 3, obtaining data at several D values between which the nanowire was
grown by a known length. If Dx were incorrect, the three b/a versus E curves would
not coincide as they do in Fig. 4d.

A second source of error arises from the geometry-induced deformation of
the droplet. The droplet is distorted because it sits on a hexagonal base, and
exhibits a non-spherical cap shape (b0/a0¼ 1.05) at zero field. Our fitting
approach does not take into account this deviation from the ideal shape since this
would require a more complex three-dimensional calculation. The program,
therefore, yields fitted values of g that tend to zero as the field approaches zero,
because a weak field can only distort a droplet if it has a very low surface tension.
The correct value of g is only obtained if the non-spherical droplet distortion
is overridden by electric field-induced deformation. Deviations from the
unperturbed geometry need to be large before their measurement becomes
significant. In order to account for this systematic error, we assign an error bar
in g that scales as 1/(a/b� a0/b0).

Data availability. The data that support the findings of this study are available
from the corresponding authors upon request.
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